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Hybrid Wave Propagation in Circularly
Shielded Microslot Lines

Ioannis O. Vardiambasis, John L. Tsalamengas, and John G. Fikioris

Abstract-Hybrid wave propagation in circularly shielded, sin-
gle or coupled microslot lines is studied by combining singu-
lar integral equation (SIE) with Green’s function techniques.
Discretization of these SIE’S by recently developed algorithms
leads to linear algebraic systems whose matrix elements as-
sume exponentially converging, numerically very stable analytical
expressions. Dispersion characteristics, modal currents, and cut-
off frequencies are presented for several cases. The algorithm
converges rapidly requiring a few expansion functions per wave-
length.

1. INTRODUCTION

CIRCULARLY shielded microstrip-lines, slot-lines. and
related structures are potentially useful in integrated-

circuit technology for microwave and millimeter wave appli-
cations. They most advantageously exhibit a wide monomode
bandwidth (useful, e.g., in building ultra-bandwidth mi-
crowave circuit elements such as hybrid junctions and di-
rectional and polarization-selective couplers), low dispersion,
moderate attenuation, easy fabrication, and comfortnability
with many microwave integrated-circuit-devices [1]–[5].

In comparison with corresponding rectangularly shielded
lines their advantages [2] are two-fold: 1) they provide bet-
ter control of field polarization (potentially useful in phase
shifters. travelling-wave isolators, and antenna feeds); and 2)
they possess better attenuation characteristics and thus they
provide a potential alternative in the cases where, owing to
increasing attenuation, rectangularly shielded lines become
impractical.

In spite of their importance, which has long been recognized

[1], dispersion characteristics of such structures have only
recently received attention in [2] (based on the method of
lines) and [3] (using the finite element method), As noted in

[2] and [3] the main reason for this lack of attention was

the complexity of the pertinent boundary value problems. It

should be noted in this context that most of the analytical

techniques applied to rectangularly shielded lines (e.g., the

dual-series-equation method) are no longer applicable.

Using powerful direct singular integral equation techniques

[6] an analytical study of the modes in circularly shielded strip-

Iines [7] and slot-lines [8] has most recently been reported.

Both these structures support uncoupled TE and TM modes,

which were investigated separately. In contrast, the microslot

(and microstrip) configurations to be studied in this paper
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Fig. 1. Circularly shielded microslot.
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Fig. 2. Cumlarly shielded double microdot. The axes of the slots are at
z = dl. J = —dz. respectively.

(Figs. 1 and 2) support hybrid waves. So, the propagation
problem is now described by a system of coupled singular

integr~-integrodifferenti~ equations (SIE-SIDE). These equa-

tions are constructed in Section II and discretized by the

al~orithrns developed in [6] and [9]. Dispersion diagrams,

current distribution of modes, and cutoff frequencies are

presented in Section III.

II. FORMULATION

Fig. 1 shows an off-centered, cylindrically shielded mi-
croslot of width 2W at (y = O, cl-w ~ x ~ d+w, –cm < z <

001 8–9480/95$04.00 0 1995 IEEE
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m) (d is the eccentricity). The radius of the cylindrical shield
is denoted by a whereas the filling material is characterized

by the scalar constants (s1, PI, kl = tiJ-) (region 1,
0< q < T),(sz,flz,kz = w-) (region 2, m < p < 2n).

In contrast to the case (El = e2, fl,l = ~z), wherein
the guided waves are decomposed into TE and TM modes
(which can be studied separately as outlined in [8]), the
present configuration supports hybrid waves only. This more

complicated propagation problem can be formulated in terms
of a system of coupled SIE-SIDE, as outlined below. The

exp(jwt) time-dependence, assumed for all field quantities, is
suppressed throughout the following anal ysis.

A. Formulation of the System of SIE-SIDE

Let us define the equivalent surface magnetic current
~(z) = E(z, O) x y = MZ(X); + il!f..(x)~. Invoking
field equivalence principles the field [Es (p), ~s (p)] e-~fl” at

7(P, w), see Fig. 1, inside r~gion_~ = 1 (2) may be considered
as the field produced by Ll( –M) in the absence of the slot

(i.e., with the slot short-circuited).

We also introduce the fields [~~~’ (p, p’), ‘{H’ (p, ~’)]e+~~’

and [J@(p, j?), ‘~s(p, p’)]e+~fl” (phased-line-source
Green’s functions) which are excited at ,d(p, q) s (s) in the
absence of the slot by the unit line-sources (~. = .2Lf. 6(p–
p’)e~~z(lM. = IV) and J. = 21.6(P – p’)e~~z(la = 1A),
respectively, impressed at p’ (p’, p’) ~ (s) (s = 1, 2). Clearly,
JH5

z = O,’1 E: = O, since the two separate semicircular
regions with homogeneous dielectrics do support TM
respectively TE (to z) waves when excited by ~. respectively

by ~..

Using the reaction theorem in the way outlined in [8] one
gets the integral representations

/
Mal+j(d, /) = sgn(g’) [Mz(z)JIHj(z, O;x’, y’)

c
+ hfz(z)MH; (q O;z’, y’)] dx

(la)

–IaEj(x’, y’) = sgn(y’)
/

~z(X)J~; (X, O;z’, y’) dx (lb)
c

where C denotes the x-axis interval d – w < z s d + w. Here
“ z ~H:(ji, p’) = -,B&k~Hj(F, F’) and jk~.~ll$(p, F’) =2&
–WCS~JEj (~, P’) where

()

JES
MHZS

;:.

(
I.&;l[Ho(kc,R-) – IL)(kc,l?+)]

– 4W A&uil[Ho(k..R-) + Ho(&sR+)] )

(2)

En= 2–&o (Neumann’s factor),

R* = ~(X– X’)2+(y +/)2, k:. =k:–@2, (3a)

(The Hankel function Hn (.) is of the second kind. .lm(.)

denotes the Bessel function of order m). Note that z has been
most naturally eliminated from (1a) and (lb) as a result of the

exp(+j~z’) dependence adopted for both J. and tia and the
exp( –j@) dependence for ES and ~s.

Letting (g’ = O*, x’ E C’) in ( la) and using the boundary

condition 11$1)(z’, 0+) = H~2)(Gc’,0– ) (x’ ● C) we end up
with the SIE

Z{ C; MZ,MZ;X’}

3P
–./

kfz(X)h; (,kc,Z?)dx
+ 2kc8 (J 1}

= o,(z’● c).

(4)

Here (and throughout the analysis that follows)

1
L.(M) = L,(M; x’) = —

/
M($) Ho(k&lz – $’1) dm,

2wp. ~
(5)

whereas h: are shorthand symbcls for

h;(kcx) = .Jn-~(kcz’)+ Jn+~(kcz). (6)

The second, SIDE of the problem may be derived as
follows: Substitute from (la) and (lb) into jk~~~~(x’, y’) =

~%%(~’, Y’) - WE. %W(Z’, Y’); (z’, Y’) G (s); Set (Y’ =

O*, x’ c C) and apply tie boundary condition H$l) (z’, 0+) =

H~2)(z’, 0- ). Then, after some lengthy algebraic manipula-

tions, one ends up with the SIDE

3(C;M.,M.;x’)

x / Mz(x)Jn(kc:,x)dx
Jc

=0 (z’ s c). (7)

B. Solution of the System of (4}and (7}

We change variables x = d+wt, x’ = d+wt’(–l S t,t’ S
1) and expand

cc

Mz[x(t)] = (1 – t2)-112 ~ aNT~(t),
N=O

(3b) N=O
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in conformity with the edge conditions (T~c and UkI are the One observes that when d = O (symmetrically placed

Chebyshev polynomials). After inserting (8) into (4) and (7), fins) S&(lV, n) = P(lV. n; kc,,w) (P = 1, A). In this case,

multiplying both sides by (1 – t“)– l/2Tfii(t’ ), respectively, therefore, (10a)–( 10d) involve single series solely which, as

(1 - t“ )112Ufi,(t’), and integrating from t’ = -1 to t’= 1, shown in [9], converge exponentially.

we obtain the following linear algebraic system in a~ and bN
C. Two Radial Coplanar A4icroslots

N=O

M=O,1,2,...

The matrix elements are given by

R~N = R~N(w, d)
2

q

– k:.
=W —A,tIN(kc,w)

.=l 2w/_L,

m

+ ~ +4~SY(M, n) S?(N, n)
n=r) 1

For the cylindrically shielded
encompassing two microslots

{dl-wl~x ~dl+wl; ~=O}

structure of Fig. 2,
at c1

and C2

{d, - w, < z < dz + WZ; g = O}, the following relations:

(lOb)

(9) ~L{ck:MN,MJ’);:.’} = o,,4
k=l

2

x{~Ck; f@k),Mjk) ; z’ } = o (d c c, u C2) (13)
‘=1

can be written with & Y defined in (4) and (7). For conve-
nience and without loss of generality, in what follows we will
assume that dl > dz.

(10a) From (13) by setting successively z’ G Cl and x’ E C2 we
get a 4 x 4 system of SIE-SIDE in the equivalent magnetic

‘L) M,$’) across the k-th slot (k = 1, 2).current densities M, ,
From this system of SIE-SIDE, after expanding

Here, 1) AIIN(kG=W), Ch~N(kG5w), and Dfi~N(k~, kc5w)—
originating from the singular part of the kernels-assume the
analytical, computationally very efficient expressions given in
[9], and 2) S; and ~$ are shorthand symbols for

S:(M, n) = S:(M, n; kC~W, k,-d)

= ~ ;[.7.-JU) + (-l)mJ.+m(Ld)]
m,=(l

x P(M, m; kc~w); P c I, A, (ha)

~$(hf, n) = S:(M, n; kc.W, r&d)

= S~(M, n – 1) + Sj(M, n+ 1) (llb)

where

I(P> q; k#) = KJ(q+p)/2(~cs’w/x) J(q-p)/2(~csw/z)>

if p + q is even, O otherwise (12a)

A(p, q; kC-W) = [~(p, q) – ~(p + 2, q)]/2. (12b)

N=O

Mik)[~(t)] = (1 – #-1/2 Emb$%N(t);
N=O

t = (~ – dk)/Wk (14)

we get, analogously to (9), the linear algebraic system

~o{~:l~;]+wz~~i[~]}=~]
~{w’fifi~ti~l+z~‘1’)N=O

(M= O,l,..., IXI). For the elements of the 2 x 2 matrices

[

R (~~) _ (RfiN)(’k) (R~:N)(’k)
1MN – (RfiN)(ik) (R~N)(zk) (i = 12; k = 1! 2) one

ends up with the following analytical expressions: 1) For z = k

(R:}N) (“) = R;:N(w, , ,d ) (U, W- Z,X; t = 1,2) (16a)

with R~~N (wj, d,) given in (l Oa)–(d), and 2) For i # k

(16c)
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(R~N)(zk)

——

[

–M~&s[=il(M, N; –1) -- E:;(M, N; 1)]
S=l

+$2 cnA& (M, ra)S$(N, n)
C6n=o 1

(16d)

+ 2k:. (E&(M, IV; –2)

+ =:$(M, N; 2) - 2E&(M, iv; o))]

+ (ues)~B:s;(M,n)s$(N,n))}
(16e)

where

~pQ (M, N; q‘ik

—— A ~ ,n[tiil(-I)n + &,]Hn,(kcs(&- ~z))
8wp~ ~=o

Cx3

x ~ %[P(M,TI + / + ‘m; If%wi)
m.o

+ (–l)mF’(M, n + / – m; k.,wi)]

x Q(N, m; IL.w~); P, Q=I, A (17a)

3P(M, n) = S;(M, ?I; kc.’u, LA),
2

S>(lkf,n) = S$(kf, n; kc.wi, kcsd,). (17b)

D. Special Case: Two Equal and Symmetrically

Placed Coplanar Microslots

When WI = W2 and dz = –dl (symmetrical case) one

has either {M~l)(x) = M~2)(–z) ~ MZ(Z), MA1)(z) =

dla for several

n

— 0.001
------- 0.101
---- 0.201

\ ., - – – 0.301

4

4- ‘

1 1, 1,, ,,, I,,,,,,,,,r,,,,,ml
0.0 0.2 0.4 0.6 0.8 1.0

v/,/a

Fig. 4. Af. versus w/cI for five values of d. = d/a; Afc vs d/a
for five values of wn = w/es; (structure of Fig. 1, Q = 3.175 mm,
&l = co, &z = 2.32zo).

M(2)(–x) a Mz(x); odd modes} or {M~l)(z) =
J)(-X) = M.(z), j@(xj = M&)(–x) = AL(z);

even modes}. In this case (13) yield a 2 x 2 system of SIE-

SIDE for the tmknown densities M. and A/lx, defined just

above and expanded as in (8), vvhose discretization leads to

the linear algebraic system

M= 0,1,2,... (18)

Here

T~N = @~N + 2W(–l)N ‘5’:.-12(
‘=11 M, N; O) (19a)

S=l



1964 IEEETRANSACTIONSON MICROWAVETHEORYANDTECHNIQUES,VOL.43. 1995

V’2 :’ ----------y- ;‘w,:,,~2
— 2 1.0<” ,“-’.

500 / “’,””(
?. : ,,
, 500— —‘. ‘!

iv-l- [~! ‘. ,:.. ----- {,,,,,,,,,,,, <,,,,,y( r,r,,,,, r,, r,,,,
... /,,‘. .....

:1.0 -0.5 0.0 0.5 1.00
0.0 Fo.o

(x-d)/w
-1.0 –0.5 0.0 0.5 1.0

(x-d)/w

(a) (b)

Fig.5. lILf./aol and l.Mz/aol versus (z –cZ)/w for three values of w/a (structure of Fig. 1, c+/Ao = 1.0061, d = O,SI = sO, s2 = 2.32eo).
(aj 1st mode. (b) 2nd mode.

(x/A.
Fig.6. Eeff versus a/Ao for the first 10 modes (stucture of
q = W2 = 0.3ci, dl = –d2 = 0.5CY,SI = EO,s2 = 2.22s. ).
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III. NUMERICAL RESULTS AND DISCUSSION

(19b)
Figs. 3–5 pertain to the single-slot structure of Fig. 1.
Fig. 3(a) and (b) shows the effective dielectric constant

=.R = (~/k0)2 as a function of w/c2 (of d/cY) for several
values of d/~ (of w/a) for the first two modes. Clearly, the

dispersion behavior of the structure is strongly influenced by
(19C) changing d andlor w.

Fig. 4 shows the monomode bandwidth AfC = fc2 – fcl
as a function 1) of w/a for several values of dm = d/a and
2) of d/a for several values of Wn = w/a, where fcl (~c2) is

x x[@ZY@f, ~; 0) + @.(@$(M, N; –2) the cutoff frequency of the 1st (2nd) mode. Clearly, A fC can
S=l be controlled by suitably selecting the slot width andlor the

+ 8$)(M, IV; 2) – 2=$)(M, N; O))] (19d) eccentricity. As these plots reveal, an increase in d leads to an
increase of A jC. (It is worth noting, also, that our results for
the cutoff frequencies f, turn out to be identical with those of

with R~N, R~~N, RgN , l&N computed from ( 10a)–(d) [8] when S1 = &Z, as expected. This is a partial check of the
after replacing A;, B; by A;(1 + (– I)m), B; (1 + (– I)m) correctness of our algorithms.)
respectively; the upper (lower) sign corresponds to the Fig. 5(a) and (b) shows the normalized modal currents
odd (even) modes. lMZ(t)/aOl and lMz(t)/aol as a function oft= (z – d)/w for
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Fig. 9. ~tc versus w~ for four values of dn (solid curves); A f. versus dn
for four values of run (dashed curves) (structure c,f Fig. 2, a = 3.175 mm,
c1 = eo, E2 = 2.22s0).

the 1st (2nd) mode. To achieve convergence, lVT = 10 basis
functions were needed in each of (8).

Figs. 6–9 refer to a symmetrical double-slot configuration

(Fig. 2: WI = W2, dl = –d2).
Fig. 6 shows S,ff as a function of the normalized frequency

@/A. for the first 10 (even; solid lines, odd; dashed lines)
modes when WI = W2 = 0.3Q, dl = –dz = 0.5a, s1 =
S0, S2 = 2.22.s.. As a check these curves were derived by (15)
and, independently, by (18). Noticeable is the mode conversion
phenomenon that occurs, e.g., between the 6th (even) and the
7th (odd) modes.

Analogous results for the first two modes and for several

values of E2/Eo are shown in Fig. 7 when WI = wz =
0.3a, dl = –d2 = 0.4a, el = Eo.

Fig. 8(a) and ((b) shows &.ff as a function of normalized
width Wn = wJck = wz /a (of normalized eccentricity

dm = dl /a = –dZ/a) for several values of dm (of Wm)
for the first two modes. Noticeable is once again the strong
influence that may be exerted on the dispersion characteristics
by changing d. ancilor w..

Fig. 9 shows the monomode bandwidth A f. = fc2– fcl =
fc2 as a function 1) of Wm for several values of dm and 2)

of dn for several values of Wn. (In this case fcl = O, since

the lowest order mode is TEM.) We observe that, for a given

value of dn, A f. increases monotonically with increasing slot
width Wm. In contrast, for a given value of w., A f. attains a
maximum value (occurring at moderate values of din).

The very practical configuration of a circularly shielded
microstrip line (shown in the inset of Fig. 10) results from the
structure of Fig. 2 in the limits dl + WI ~ CX;dz —wz ~ —a’.
Its dispersion characteristics are shown in Fig. 10 in the

symmetrical case, for the first two modes and for several strip
widths (denoted by 2h).

The convergence characteristics of the algorithm are illus-
trated in Table I, where e,ff is shown for the 1st, 5th, and
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TABLE I
CONVERGENCEOF’IHEALGORITHM

I
&eff

N, 1st mode 5th mode 10th mode

1 2.172203489 1.822293513 1.300070815

2 2.204315894 1.878139638 1.302310907

3 2.204448528 1.878327751 1.302902253

4 2.204227920 1,878043961 1.302369330

5 2.204227952 1.878043961 1.302370228

6 2.204227856 1.878043961 1.302369683

7 2.204227856 1.878043962 1.302369684

10th modes versus Nv, where N. denotes thenumber of basis
functions usedin each of(8). These values correspond to the
structure of Fig. 1 when a/Ao = 1.0061,w/12 = Ot25,d =
O,E1 = EO, E2 = 2.32eo. Apparently the convergence is
very rapid and stable. Thus, e.g., 2 basis functions suffice
to determine e,fl to within four significant decimals in all
cases.

IV. CONCLUSION

Direct singular integral equation techniques have been eff-

ectively applied to solve for the propagation characteristics

of hybrid waves in circularly shielded, single or coupled,

microslot lines. The dependence of these characteristics on

the geometrical parameters (such as eccentricity, slot-width,
relative dielectric constant, radius of the shield) has been
also investigated. The matrix elements are given by efficient
analytical expressions and the algorithm is rapidly converging,
requiring a few expansion functions. By following a limiting
procedure, dispersion curves have been also presented for the
practical structure of a circularly shielded microstrip line.
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