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Hybrid Wave Propagation in Circularly
Shielded Microslot Lines

Ioannis O. Vardiambasis, John L. Tsalamengas, and John G. Fikioris

Abstract—Hybrid wave propagation in circularly shielded, sin-
gle or coupled microslot lines is studied by combining singu-
lar integral equation (SIE) with Green’s function techniques.
Discretization of these SIE’s by recently developed algorithms
leads to linear algebraic systems whose matrix elements as-
sume exponentially converging, numerically very stable analytical
expressions. Dispersion characteristics, modal currents, and cut-
off frequencies are presented for several cases. The algorithm
converges rapidly requiring a few expansion functions per wave-
length.

I. INTRODUCTION

IRCULARLY shielded microstrip-lines, slot-lines, and
Crelated structures are potentially useful in integrated-
circuit technology for microwave and millimeter wave appli-
cations. They most advantageously exhibit a wide monomode
bandwidth (useful, e.g., in building ultra-bandwidth mi-
crowave circuit elements such as hybrid junctions and di-
rectional and polarization-selective couplers), low dispersion,
moderate attenuation, easy fabrication, and comformability
with many microwave integrated-circuit-devices [1]-[5].

In comparison with corresponding rectangularly shielded
lines their advantages [2] are two-fold: 1) they provide bet-
ter control of field polarization (potentially useful in phase
shifters, travelling-wave isolators, and antenna feeds); and 2)
they possess better attenuation characteristics and thus they
provide a potential alternative in the cases where, owing to
increasing attenuation, rectangularly shielded lines become
impractical.

In spite of their importance, which has long been recognized
[1], dispersion characteristics of such structures have only
recently received attention in [2] (based on the method of
lines) and [3] (using the finite element method). As noted in
[2] and [3] the main reason for this lack of attention was
the complexity of the pertinent boundary value problems. It
should be noted in this context that most of the analytical
techniques applied to rectangularly shielded lines (e.g., the
dual-series-equation method) are no longer applicable.

Using powerful direct singular integral equation techniques
[6] an analytical study of the modes in circularly shielded strip-
lines [7] and slot-lines [8] has most recently been reported.
Both these structures support uncoupled TE and TM modes.
which were investigated separately. In contrast, the microslot
(and microstrip) configurations to be studied in this paper
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Fig. 1. Circularly shielded microslot.
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Fig. 2. Circularly shielded double microslot. The axes of the slots are at
r = di.x = —da. respectively.

(Figs. 1 and 2) support hybrid waves. So, the propagation
problem is now described by a system of coupled singular
integral-integrodifferential equations (SIE-SIDE). These equa-
tions are constructed in Section II and discretized by the
algorithms developed in [6] and [9]. Dispersion diagrams,
current distribution of modes, and cutoff frequencies are
presented in Section III.

II. FORMULATION

Fig. 1 shows an off-centered, cylindrically shielded mi-
croslot of width 2w at (y = 0, d—w < gz < d+w, -0 < 2 <
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00) (d is the eccentricity). The radius of the cylindrical shield
is denoted by o whereas the filling material is characterized
by the scalar constants (e1,p1,k1 = w/E1fir) (region 1,
0 <@ <7),(e2, 2, k2 = wy/E2fiz) (region 2, T < © < 27).

In contrast to the case (1 = e9,41 = p2), wherein
the guided waves are decomposed into TE and TM modes
(which can be studied separately as outlined in [8)]), the
present configuration supports hybrid waves only. This more
complicated propagation problem can be formulated in terms
of a system of coupled SIE-SIDE, as outlined below. The
exp(jwt) time-dependence, assumed for all field quantities, is
suppressed throughout the following analysis.

A. Formulation of the System of SIE-SIDE

Let us define the equivalent surface magnetic current
M(z) = E(z,0) x § = M,(x)? + M,(x)i. Invoking
field equivalence principles the field [E*(p), H*(p)]e~7%% at
p(p, ¢), see Fig. 1, inside region s = 1 (2) may be considered
as the field produced by M(—M) in the absence of the slot
(i.e., with the slot short-circuited).

We also introduce the fields [ E2(p, p'), M H>(p, 7 )]et19%
and  [YE%(p,p'),”H*(p,p')]et#*  (phased-line-source
Green’s functions) which are excited at 5(p,¢) € (s) in the
absence of the slot by the unit line-sources (M, = 2M,8(p—
peiP (M, = 1V) and J, = 21,6(p — §')e??*(I, = 14),
respectively, impressed at §'(p’, ¢’) € (s) (s = 1,2). Clearly,
TH: = 0,ME? = 0, since the two separate semicircular
regions with homogeneous dielectrics do support TM
respectively TE (to z) waves when excited by J, respectively
by M,.

Using the reaction theorem in the way outlined in [8] one
gets the integral representations

M, H:(z',y) = sgn(y’)/ (M, (2)MHS(z,0;2,9/)
c
+ M_(a)MH? (2,0, ,y")] da
(1a)
LB y) = sgnly') [ Ma(@)Bio, 055 ) do (10
c
where C denotes the z-axis interval d —w < 2 < d+ w. Here
GkEMHL (5, 0) = —BEMH:(p, p') and jKZH(p,p) =
—wasg—yJEj(ﬁ, p') where

JES
(1)

_ ' I EAI[HO(]‘;CSRA) - HO(‘%CSR+)] )
B 4w Mo [Ho(kes R™) + Holkes RT)]

sin(me’)
+ z_:oent]n( cos(mcp'))
2

B sin(my)

kcsp)‘]'ﬂ(kcspl) <AZ cos(mgo)

(Neumann’s factor),
yiy) kzs:k.g_ﬁ27
kzs H;n(kcsa) _@ H o (keser)

B2 = .
Jrln(kcsa) 7 " Jm(kcsa)
(3b)

6'n, =2- 6n0
= V(-

AS =M
" “2wps

(3

a
2we g
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(The Hankel function H,,(-) is of the second kind. J,,(-)
denotes the Bessel function of order m). Note that z has been
most naturally eliminated from (1a) and (1b) as a result of the
exp(+j8z) dependence adopted for both J, and M, and the
exp(—78z) dependence for E* and H".

Letting (v = 0%,2’ € C) in (la) and using the boundary
condition HM(2/,0%) = HZ(Z)(SB/,U_)(.TI € C) we end up
with the SIE

L{C; M., My; 2"}

2
_ d
= ; { = ke Lo(Mz) + 56— Lo(Me)
+ZenA Jo(kest! )[/ M, (2)Jn (kesz) dz

M (
chs /

Here (and throughout the analysis that follows)

(kesx) dx]} =0, («' € C).
C))

L(M) = Ly(M;2') =

M(z)Ho(keslz — 2'|) dz,
© ®)

2w s

whereas h are shorthand symbols for
b (kew) = Jno1(ket) £ Jpgr (ko). (6)

The second, SIDE of the problem may be derived as
follows: Substitute from (la) and (1b) into jk2 H:(z',y') =

Bor Hy(z'y) — wes g E3(2'y); (2, y) € (s); Set (y =
0%,2’ € C) and apply the boundary condition Hél)(w’ ,0h) =
H,EQ)(m’ ,07). Then, after some lengthy algebraic manipula-
tions, one ends up with the SIDE

F(C; M, My;x')
2
o d
22{35@
b 3 e[ - A ()
S n=0

x/CMz(m)Jn(kcsx)dx
/C M, (x)|B2 A% h,; (ks Vhyy (Kes)

Lo(M.) - [,di + 12| L)

"ok
+Hweo ) BihY (kest' YA (keo)] dx] }

0 (& €O %

B. Solution of the System of (4) and (7)

We change variables z = d+wt, 2’ = d+wt' (-1 < t,t' <
1) and expand

MLz(B)] = (1- )72 3 anT(t)

N=0

Mlz(t)] = (1 — 2)/2 i bnUn(t); t=(z—d)/w (8)
N=0
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in conformity with the edge conditions (T; and Uy, are the
Chebyshev polynomials). After inserting (8) into (4) and (7),
multiplying both sides by (1 — ¢°)=Y/2Ty(#'), respectively,
(1 —¢7)Y2U(¢), and integrating from ¢’ = —1 to ¢’ = 1,
we obtain the following linear algebraic system in ay and by

> lanRiin + bv B3N] =0,
N=0

l[anRiin + by RyTN] = 0;
N=0
M=0,1,2,... 9
The matrix elements are given by

Ryin = RMN(w d)

_k(?b
v j/—;l [2wu

Anrwv(keow)

s

+ ) en A5 S3(M,n)S3(N, n)} (102)
n=0
rinv = Rify(w,d)

Jﬂz

(kesw)

- — Z enA3 8% (M, n)S3(N, n)]
(10b)
(10¢)

v = Bain(w,d) = =R (w, d),

Ryin = Ryfn(w,d)

2 %)
Z -1 w
- =1 { 2wt w Dar (k. kest) + 4k2 Z €n
x [B2A55% (M, n)S% (N, n)

+ (we,)2 B3 S5 (M, ) S5 (N, n)] } (10d)

Here, 1) AJ\IN(kcsqu)7 C]WN(kcsu7)a and DA[N(k§7 kcsw)_
originating from the singular part of the kernels—assume the
analytical, computationally very efficient expressions given in
[9], and 2) S% and S3 are shorthand symbols for

SISD(M’ n) = S;(Ma n; kesw, klcsd>
0 €m .
=3 [ (keed) 4 (=1)™ T (o]
m=0
x P(M,m; kesw); P =1, A, (11a)
S3L(M,n) = SL(M,n; kesw, bigsd)
=S (M,n—1)£ S (M,n+1) (11b)
where
[(pﬂ q; kCS‘w) = 7r‘](q+p)/2(k'cs'w/2)<](q—p)/2(kcsw/2)a
if p + ¢ is even, O otherwise (12a)
AP, g; kesw) = [I(p,q) — I(p+ 2,9)]/2. (12b)
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One observes that when d = 0 (symmetrically placed
fins) SL(N,n) = P(N.n;k,w) (P = I,A). In this case,
therefore, (10a)—(10d) involve single series solely which, as
shown in [9], converge exponentially.

C. Two Radial Coplanar Microslots

For the cylindrically shielded structure of Fig. 2,
encompassing two microslots at C =
{d1 —wy <x <dy+w; y=0} and Cy =

{d2 — we < z < dg + wy; y = 0}, the following relations:

2
> L{CrMP, MP;x'}y = 0,
k=1

2
Y F{CME) ME)ia'} =0 (&' € CruCh) (13)
k=1

can be written with £, F defined in (4) and (7). For conve-

nience and without loss of generality, in what follows we will

assume that d; > ds.

From (13) by setting successively =’ € 7 and ' € Cy we
get a 4 x 4 system of SIE-SIDE in the equivalent magnetic
current densities M*, M) across the A-th slot (k =1,2).
From this system of SIE-SIDE, after expanding

2723 6 {Tx (1)
N=0

MO La(B)] = (1= )12 3 oPUn )
N=0

t=(x—dp)/ws

we get, analogously to (9), the linear algebraic system

MPe(t)] = (1

(14)

o0

(1 (2) A
1 0
Z {R Euljx)r [b(l)] + we RJV[213 {b(z)]} = [()J1

N=0
e ] (1) =

> {fmR@ ] R[]} -] o

00). For the elements of the 2 x 2

=0
M = 0, 1,.. ) me matrices
= Rzz ) ik (Rzr ) 1k )

R M = ( MN Gk MN i=12:k=1,2) one
MN . (RMN)( k)_ (RMN)F“C) ( ] )
ends up with the following analytical expressions: 1) For i = &

(RX}) ) ) = RZ\IN(w’U l) (UJ?’U =2z, 1= 172) (163)
with RY7 (w;, d,) given in (10a)—(d), and 2) For ¢ # k
(ek)

|
(el e

( ]\/IN)

= [21@;{{ (M, N;0)

s=1

+ Z en 4y S(M,n)SE(N, n>] (16b)

n=0
(Rzz )(Uc)

~Jﬁ2{ S[ER (M, N; —1) — 2] (M, N; 1)]

2k Z en Al g’ (N, n)S’}(M, n)]

S n=0

(16¢)
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Fig. 3.
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(a) e versus w/a for several values of d/o (structure of Fig. 1, a/Ag = 0.567,61 = €o,62 = 2.32¢0). (b) ceqr versus d/a for several

values of w/a (structure of Fig. 1, afXo = 0.424,&1 = &g,62 = 4.34¢).

(Rmz )(zk)

= ~Jﬂz

es |20 (M, N; —1) — E§N (M, N; 1)]

Zk Ee"

' (M, n)SE(N,n)

CS n= 0
(16d)
2
T K ]‘ —_
(REZ\NF) = ZZ{ [8K2E5A (M, N;0)
+ 2k2, (E5M (M, N; -2)
+E39A(M’ ) )_ E:XI:A(Mano))]
+ o 3 en (824557 (M,n)S* (I, n)
€8 n=0

+(wss)2Bz§;(M,n)§f;(N,n))} (16¢)

where
E59(M, N; 1)

~1)" + 82| Hy (kes(d1 — d2))

X Z em[P(M,n + £ + m; kesw;)
m=0
+ (—1)™P(M,n+ £ —m;kesw;)]
XQ(N7m§kcswk); P?QE-LA
S’;:’(Ma ’I’L) = S'ISD(MJ% kcswukcsdi),

‘gnﬂ:(M’ n) = ‘S:i(M, n,; kcswi, szdﬂ)'

(17a)

(17b)

D. Special Case: Two Equal and Symmetrically
Placed Coplanar Microslots

When w; = wy and dz = —d; (symmetrical case) one
has either {Mz(l)(a:) = MZ(2)(—1’) = Mz(w),Ma(gl)(m) =

0.101
---- 0.201
o -~ = 0.301
N — — 0.401
N '

(LR L L A0 B R

1
0.0 0.2

0.4 0.6 0.8 1.0
w/
Fig. 4. Af. versus w/o for five values of dn = dfo;Afe vs dfa
for five values of w, = w/a; (structure of Fig. 1, o = 3.175 mm,

&1 = £g,€2 = 2.3220).

—Méz)(—x) = M,(z); odd modes} or {Mz(l)(w) =
~MP(-z) = M.(z), M (z) = MP(~2) = M,(z);
even modes}. In this case (13) yield a 2 x 2 system of SIE-
SIDE for the unknown densities M, and M, defined just
above and expanded as in (8), whose discretization leads to
the linear algebraic system

o0 DO
Z[aNTf/fN-I-bNTffN =0, 5 [anTiin +0nTain] = 0;
N=0 N =
M=0,1,2,... (18)
Here
2
Tiin = Rijn £ 2w(-1)N Y ELE(M,N;0) (19

g==1
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(a) Ist mode. (b) 2nd mode.
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Fig. 6. c.g versus afXg for the first 10 modes (stucture of Fig. 2,
wy = wg = 0.3a,d; = —ds = 0.5c, 57 = €q, 89 = 2.22¢p).

Tty = Rifn £ jBw(-1)N
2
X 3 kes(E15 (M, N; —1) = E{8(M, N;1)) (19b)

Tiin = Rﬁw + jfw(~1)"*

X Ekcs (295 (M, N; 1) - 25 (M, N:1)) (19)

w
T]LIN - RJWN 4 ('—1)N+1

X Z [8EZEMN (M, N;0) + 2k2, (BMMN (M, N; -2)

+ B9 (M, N;2) — 2215 (M, N;0))] (19d)

with RZZ,, R3%y, RZy, RE%\ computed from (102)—(d)
after replacing A%, B3 by A3(1 + (-1)"),B:(1 £ (-1)")
respectively; the upper (lower) sign corresponds to the
odd (even) modes.
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Fig. 7. ceg versus af\o for the first two modes and for several values of
€2 /€0 (structure of Fig. 2, w1 = wg = 0.3a,dy = —dy = 0.4, &1 = €g).

HI. NUMERICAL RESULTS AND DISCUSSION

Figs. 3-5 pertain to the single-slot structure of Fig. 1.

Fig. 3(a) and (b) shows the effective dielectric constant
ceff = (B/ko)? as a function of w/a (of d/a) for several
values of d/o (of w/o) for the first two modes. Clearly, the
dispersion behavior of the structure is strongly influenced by
changing d and/or w.

Fig. 4 shows the monomode bandwidth Af. = f.o — fo1
as a function 1) of w/« for several values of d,, = d/a and
2) of d/a for several values of w, = w/a, where f.1(fe2) is
the cutoff frequency of the 1st (2nd) mode. Clearly, A f. can
be controlled by suitably selecting the slot width and/or the
eccentricity. As these plots reveal, an increase in d leads to an
increase of Af.. (It is worth noting, also, that our results for
the cutoff frequencies f. turn out to be identical with those of
[8] when e; = €9, as expected. This is a partial check of the
correctness of our algorithms.)

Fig. 5(a) and (b) shows the normalized modal currents
| M, (t)/ao| and | M, (t)/ao| as a function of ¢t = (z—d)/w for
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Fig. 8.

wy (structure of Fig. 2, /Ao = 0.5295.61 = eg,e2 = 4.34g0).
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Fig. 9. Af. versus wy, for four values of d,, (solid curves); Af. versus d,
for four values of wn (dashed curves) (structure of Fig. 2, a = 3.175 mm,
€1 = &0.89 = 2.22¢0).

the 1st (2nd) mode. To achieve convergence, N, = 10 basis
functions were needed in each of (8).

Figs. 6-9 refer to a symmetrical double-slot configuration
(Fig. 2: wp, = ’wz,dl = —dg).

Fig. 6 shows e.¢ as a function of the normalized frequency
afo for the first 10 (even; solid lines, odd; dashed lines)
modes when w; = ws = 0.3a,d1 = —dy = 0.5a,e; =
€0,€2 = 2.22¢(. As a check these curves were derived by (15)
and, independently, by (18). Noticeable is the mode conversion
phenomenon that occurs, e.g., between the 6th (even) and the
7th (odd) modes.

Analogous results for the first two modes and for several
values of e3/e¢ are shown in Fig. 7 when w; = wy =
0.30[,(11 = —-dg = 0.406,61 = &9.

Fig. 8(a) and ((b) shows e.g as a function of normalized
width w, = wi/a = ws/a (of normalized eccentricity
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Fig. 10. €.z versus afXog for a circularly shielded symmetrical
microstripline for the first two modes and for four values of
hia(e1r = 0,62 = 2.2280).
d, = di/a = —dy/a) for several values of d,, (of w,)

for the first two modes. Noticeable is once again the strong
influence that may be exerted on the dispersion characteristics
by changing d,, and/or w,.

Fig. 9 shows the monomode bandwidth Af. = feo — fo1 =
feo as a function 1) of w,, for several values of d,, and 2)
of d,, for several values of w,. (In this case f.; = 0, since
the lowest order mode is TEM.) We observe that, for a given
value of d,,, A f. increases monotonically with increasing slot
width w,,. In contrast, for a given value of w,, Af, attains a
maximum value (occurring at moderate values of d,,).

The very practical configuration of a circularly shielded
microstrip line (shown in the inset of Fig. 10) results from the
structure of Fig. 2 in the limits d; + w1 — a;dz — w2 — —a.
Its dispersion characteristics are shown in Fig. 10 in the
symmetrical case, for the first two modes and for several strip
widths (denoted by 2h).

The convergence characteristics of the algorithm are illus-
trated in Table I, where c.g is shown for the 1st, Sth, and
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TABLE I
CONVERGENCE OF THE ALGORITHM
eeff
N, | Ist mode 5th mode 10th mode

1 [12.172203489 | 1.822293513 | 1.300070815
2 [12.204315894 | 1.878139638 | 1.302310907
3 | 2.204448528 | 1.878327751 1.302902253
4 ]2.204227920 | 1.878043961 1.302369330
5 |12.204227952 | 1.878043961 1.302370228
6 | 2.204227856 | 1.878043961 1.302369683
7 || 2.204227856 | 1.878043962 | 1.302369684

10th modes versus [V,., where IV, denotes the number of basis
functions used in each of (8). These values correspond to the
structure of Fig. 1 when a/X\g = 1.0061,w/a = 0.25.d =
0,e17 = eg,82 = 2.32e¢. Apparently the convergence is
very rapid and stable. Thus, e.g., 2 basis functions suffice
to determine .5 to within four significant decimals in all
cases.

IV. CONCLUSION

Direct singular integral equation techniques have been ef-
fectively applied to solve for the propagation characteristics
of hybrid waves in circularly shielded, single or coupled,
microslot lines. The dependence of these characteristics on
the geometrical parameters (such as eccentricity, slot-width,
relative dielectric constant, radius of the shield) has been
also investigated. The matrix elements are given by efficient
analytical expressions and the algorithm is rapidly converging,
requiring a few expansion functions. By following a limiting
procedure, dispersion curves have been also presented for the
practical structure of a circularly shielded microstrip line.
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